La scatola degli attrezzi a nostra disposizione per l'editing genetico è diventata più ricca: due nuove estensioni della tecnica CRISPRconsentono
di intervenire in modo mirato su DNA e RNA, riscrivendo le singole lettere o basi azotate, le cui alterazioni sono responsabili di oltre la metà delle malattie genetiche conosciute.
I due nuovi strumenti, sviluppati da due team indipendenti del Broad Institute del MIT e dell'Università di Harvard a Cambridge, Massachussetts, sono adattamenti "chirurgici" delle forbici molecolari che abbiamo imparato a conoscere negli ultimi cinque anni.
DRITTI AL BERSAGLIO. Mentre però la CRISPR interviene sulla doppia elica tagliandone la sezione da modificare ("come usare un machete per togliere una verruca", cit.), le nuove tecniche messe a punto non tagliano la doppia elica, ma utilizzano enzimi per ridisporre gli atomi in una delle quattro basi che compongono DNA e RNA, trasformandola in un'altra base senza alterare le "lettere" circostanti.
Nel campo dell'editing genetico si tratta di una vera rivoluzione: gran parte delle malattie genetiche associate a mutazioni puntiformi, cioè cambiamenti di singoli nucleotidi, dipende dalla posizione sbagliata di una singola "lettera" o base che compongono il DNA, adenina (A), citosina (C), guanina (G) e timina (T).
MATITA ROSSA. La prima tecnica, sviluppata da David Liu del Broad Institute del MIT, chiamata Adenine Base Editor (ABE), interviene sulla disposizione degli atomi di adenina trasformandola in guanina, in modo tale che una coppia di basi A-T possa diventare una C-G. Sperimentato su colture di cellule umane, questo metodo di editing di basi (una sorta di "correzione di bozze" che trova i singoli refusi) è stato efficace nel 50% dei casi, e non ha prodotto altre mutazioni indesiderate. Lo studio è stato pubblicato su Nature.
DIVERSO OBIETTIVO. In un secondo lavoro descritto su Science un altro team, coordinato da Feng Zhang, bioingegnere del Broad Institute, ha utilizzato una tecnica analoga per intervenire non sul DNA ma sull'RNA, il messaggero che regola il processo con il quale i nostri geni codificano proteine. Il metodo trasforma l'adenina in inosina (I), un composto chimico che la fabbrica di proteine cellulari legge come una G (cioè interpreta come guanina).
Nessun commento:
Posta un commento